## C. U. SHAH UNIVERSITY

## M.Sc. (Mathematics) Semester-IV Summer - 2015 Regular Examination <br> Subject Name: Advance Graph Theory Subject Code: 5SC04AGE1

Time: 03 hours
Maximum Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumption whenever necessary.
3. Figures to the right indicate full marks.

## Section- I

Q-1 a) Write down algorithm for pruffer code.
b) Define : Network .
c) Give only the statement of first theorem of graph theory.
d) Define : Spanning tree.

Q-2 a) For the given tree graph T find out pruffer code.

b) Prove that minimum height of a binary tree with n vertices is
$\left\lceil\log _{2}(n+1)-1\right\rceil$ and maximum height is $\frac{n-1}{2}$.
c) Find out graceful labeling of following tree graph.


OR
Q-2 a) Pruffer code of a tree T is $\mathrm{a}=(2,3,1,1,2,7)$ Draw the tree graph.
b) Prove that number of pendant vertices in a binary tree with n vertices is
c) Find out maximum and minimum possible height of a binary tree with 15 vertices.

Q-3 a) State and prove Cayley's theorem for to find number of spanning trees for a complete graph.
b) Using Matrix Tree computation method find out number of spanning trees of graphs (1) Complete bipartite graph $\mathrm{K}_{2,3}$ and (2) Cycle $\mathrm{C}_{4}$.

OR
Q-3 a) State and prove Matrix - Tree theorem.
b) Define Edge contraction. Let $\tau(G)$ denote number of spanning trees of a graph G. If $e \in E(G)$ is not a loop then prove $\tau(G)=\tau(G-e)+\tau(G . e)$

## Section - II

Q-4 a) Define : Matroid.
b) Define : Flow augumenting path.
c) Explain vertex condition and edge condition in a network.
d) Define : Minimum polynomial.

Q-5 a) Applying Dijkstra's algorithm find out shortest path from vertex 1 to every other vertex.

b) Using Kruskal's algorithm find out shortest ( minimum ) spanning tree in following graph G .

c) Explain Moore's BFS algorithm to find shortest path.

## OR

Q-5 a) Explain Dijkstra's algorithm.
b) Explain Kruskal's algorithm.
c) Find out flow augumenting paths in following network and hence find maximum possible flow.


Q-6 a) Find out Eigen values of cycle graph $\mathrm{C}_{4}$.
b) Find out eccentricity of each vertex of following graph.

c) State and prove Cayley - Hamilton theorem for a graph.

OR
Q-6 a) Find out spectrum of complete bipartite graph $K_{2,2}$.
b) If T is a spanning tree of a k -dimensional cube graph $\mathrm{Q}_{\mathrm{k}}$, then prove that there is an edge of $\mathrm{Q}_{\mathrm{k}}$ outside T whose addition to T creates a cycle of length at least 2 k .
c) Prove that Among six persons it is possible to find out three mutual acquaintances or three mutual in acquaintances.

