Seat No. ____

Maximum Marks: 70

C. U. SHAH UNIVERSITY

M.Sc. (Mathematics) Semester-IV Summer – 2015 Regular Examination

Subject Name: Advance Graph Theory Subject Code: 5SC04AGE1

Time: 03 hours

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumption whenever necessary.
- 3. Figures to the right indicate full marks.

Section– I Marks

Q-1	a)	Write down algorithm for pruffer code.	(02)
	b)	Define : Network .	(02)
	c)	Give only the statement of first theorem of graph theory.	(02)
	d)	Define : Spanning tree.	(01)

Q-2 a) For the given tree graph T find out pruffer code. (06)

- b) Prove that minimum height of a binary tree with n vertices is $\lceil \log_2(n+1) 1 \rceil$ and maximum height is $\frac{n-1}{2}$. (05)
- c) Find out graceful labeling of following tree graph. (03)

OR

- Q-2 a) Pruffer code of a tree T is a = (2,3,1,1,2,7) Draw the tree graph. (06) b) Prove that number of pendant vertices in a binary tree with n vertices is $\frac{n+1}{2}$.
 - c) Find out maximum and minimum possible height of a binary tree with (03) 15 vertices.

Q-3	a)	State and prove Cayley's theorem for to find number of spanning trees for a complete graph.	(07)
	b)	Using Matrix Tree computation method find out number of spanning trees of graphs (1) Complete bipartite graph $K_{2,3}$ and (2) Cycle C ₄ .	(07)
		OR	
Q-3	a)	State and prove Matrix – Tree theorem.	(08)

a) State and prove Matrix – Tree theorem. (08)
b) Define Edge contraction. Let τ(G) denote number of spanning trees of a graph G. If e ∈ E(G) is not a loop then prove τ(G) = τ(G-e) + τ(G.e)

Section – II

- Q-4a) Define : Matroid.(02)b) Define : Flow augumenting path.(02)c) Explain vertex condition and edge condition in a network.(02)d) Define : Minimum polynomial.(01)
- Q-5 a) Applying Dijkstra's algorithm find out shortest path from vertex 1 to (06) every other vertex.

b) Using Kruskal's algorithm find out shortest (minimum) spanning tree in (04) following graph G.

c)	Explain Moore's BFS algorithm	to find shortest path.	(04)
----	-------------------------------	------------------------	------

OR

(06)

(04)

- Q-5 a) Explain Dijkstra's algorithm.b) Explain Kruskal's algorithm.
 - c) Find out flow augumenting paths in following network and hence find (04) maximum possible flow.

-----X-----X------